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Abstract. We report results of susceptibility χ and 7Li NMR measurements on LiVSi2O6. The temperature
dependence of the magnetic susceptibility χ(T ) exhibits a broad maximum, typical for low-dimensional
magnetic systems. Quantitatively it is in agreement with the expectation for an S = 1 spin chain, repre-
sented by the structural arrangement of V ions. The NMR results indicate antiferromagnetic ordering below
TN = 24 K. The intra- and interchain coupling J and Jp for LiVSi2O6, and also for its sister compounds
LiVGe2O6, NaVSi2O6 and NaVGe2O6, are obtained via a modified random phase approximation which
takes into account results of quantum Monte Carlo calculations. While Jp is almost constant across the
series, J varies by a factor of 5, decreasing with increasing lattice constant along the chain direction. The
comparison between experimental and theoretical susceptibility data suggests the presence of an easy-axis
magnetic anisotropy, which explains the formation of an energy gap in the magnetic excitation spectrum
below TN, indicated by the variation of the NMR spin-lattice relaxation rate at T � TN.

PACS. 76.60.-k Nuclear magnetic resonance and relaxation – 02.70.Ss Quantum Monte Carlo methods –
75.10.Pq Spin chain models – 75.30.Cr Saturation moments and magnetic susceptibilities

1 Introduction

In compounds of the series AVX2O6, where A= Li, Na and
X=Si, Ge, the trivalent V ions occupy the centers of VO6

octahedra forming chain-like structured elements. Because
of this arrangement of the S = 1 magnetic moments , these
materials may in principle be considered as a physical re-
alization of an ensemble of one-dimensional spin S = 1
chains with an antiferromagnetic intrachain coupling J .
These, according to Haldane [1], are expected to adopt
a non magnetic ground state, separated by an energy gap
from magnetically excited states.

Nevertheless the measured magnetic susceptibility χ
of the first member of this family, LiVGe2O6 [2], was
found to be clearly different from the expected χ(T ) of
spin S = 1 chains. The discrepancy was first attributed to
some sophisticated types of intrachain interactions [2,3],
but subsequent 7Li NMR experiments [4] revealed a three-
dimensional antiferromagnetic order below TN = 24 K,
most likely due to a small but non negligible coupling Jp
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between moments of neighbouring chains. Magnetic sus-
ceptibility and 23Na NMR measurements later confirmed
a similar behaviour of NaVGe2O6 with TN = 18 K [5].

It is conceivable that the compounds of the series
AVX2O6 represent a physical realization of solids with
spin S = 1 chains but with interchain interactions that
are large enough to quench the expected Haldane gap and
to provoke a magnetically ordered ground state, as was
suggested in reference [6] on the basis of magnetic suscep-
tibility and specific heat measurements.

In this article, we present the results of measurements
of the magnetic susceptibility and of the 9Li NMR re-
sponse of LiVSi2O6. Inspecting the temperature depen-
dence of the magnetic susceptibility reveals no anomaly
that would indicate the onset of magnetic order. However,
an abrupt broadening of the NMR spectra upon cool-
ing reveals a transition from the high-temperature param-
agnetic to the low-temperature antiferromagnetically or-
dered phase at TN = 24 K. In addition, a prominent peak
in the temperature dependence of the NMR spin-lattice
relaxation rate T−1

1 (T ) at the same temperature supports
this interpretation.
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Including previously obtained experimental data we
extend our discussion to cover the series AVX2O6. Using
a modified random phase approximation (RPA), we de-
termine the values of J and Jp from the corresponding
values of TN and Tmax, where the latter temperature cor-
responds to the maximum of the magnetic susceptibility.
While Jp is approximately constant, J varies by a fac-
tor of 5 across the AVX2O6 series. We then compare the
measured magnetic susceptibilities to those calculated by
quantum Monte Carlo (QMC) methods with correspond-
ing values of J and Jp, and argue that the observed dis-
crepancies may be explained by a single ion anisotropy.

The paper is organized as follows. In Section 2 we
address the crystal structure and the synthesis of the
LiVSi2O6 sample. Section 3 is devoted to presenting the
results of magnetic susceptibility measurements, and in
Section 4 we display the results of the NMR measure-
ments. In Section 5 we determine J and Jp for the com-
pounds in the AVX2O6 series, and compare the exper-
imental and calculated magnetic susceptibilities. In the
Appendix we present the technical aspects of the QMC
calculations used in this paper in some detail.

2 Crystal structure and sample

The crystal structure of LiVSi2O6 is schematically shown
in Figure 1. Typical for the AVX2O6 series, we note the
chains of isolated VO6 octahedra joined at the edges.
These chains are linked and kept apart by SiO4 tetrahe-
dra. Considering the most likely oxidation states of Li+,
Si4+ and O2−, the V ions are expected to be trivalent.
The magnetic moments are thus due to two electrons oc-
cupying the 3d shell of V3+ ions, thus forming an S = 1
configuration. The effective interaction between these mo-
ments is mediated by the oxygen 2p-electrons, and is di-
rect only for neighbours placed on the same chain. In this
geometry, the intrachain nearest neighbour coupling J is
expected to be much larger than any possible coupling Jp

between moments on different chains.
LiVSi2O6 crystallizes in a monoclinic structure, space

group C2/c [7]. The LiVSi2O6 powder sample was pre-
pared with the following procedure. First, a precursor
with nominal composition LiSi2Ox was synthesized by
heating a mixture of Li2CO3 (Aldrich, 99.99%) and SiO2

(Aldrich, 99.995%) at 725 ◦C for 50 h in air and a re-
annealing at 730 ◦C for 20 h in air. Then a stoichiomet-
ric mixture of LiSi2Ox and V2O3 (Aldrich, 99.99%) was
pressed into pellets and annealed at 990 ◦C for 40 h in an
evacuated silica tube. Subsequent heat treatment for 60 h
in another evacuated silica tube was necessary to obtain
the desired composition of LiVSi2O6. According to X-ray
powder diffraction data, the sample contained 95% of the
desired phase with the pyroxene structure and 5 mass
percent of non-magnetic SiO2. The lattice parameters of
LiVSi2O6 were determined by room temperature X-ray
diffraction measurements, and resulted in a = 9.634 Å,
b = 8.586 Å, c = 5.304 Å, and β = 109.69 ◦.

In Table 1 we list the structural parameters of the unit
cell of the compounds in the AVX2O6 series. In Table 2

a

bc

Fig. 1. Representation of the crystal structure of LiVSi2O6.
The V3+ ions are located in the center of the dark-grey VO6 oc-
tahedra, while the Si4+ ions occupy the centers of the light-grey
SiO4 tetrahedra. The Li+ions are represented by the spheres.
The crystallographic axes are represented by dashed lines.

Table 1. Values of the unit cell parameters in the AVX2O6

family.

Space a b c β
group (Å) (Å) (Å)

LiVSi2O6 C2/c 9.634 8.586 5.304 109.69 ◦

NaVSi2O6 [6] C2/c 9.634 8.741 5.296 109.90 ◦

LiVGe2O6 [2] P21/c 9.863 8.763 5.409 108.21 ◦

NaVGe2O6 [5] P21/c 9.960 8.844 5.486 106.50 ◦

Table 2. V–V bond data for selected compounds in the
AVX2O6 family.

δb V–V length V–V–V angle
(Å) (Å)

LiVSi2O6 0.188 3.105 62.7 ◦

LiVGe2O6 0.186 3.158 62.1 ◦

NaVGe2O6 0.193 3.256 63.2 ◦

we also list the length of the intrachain V–V bonds, as
well as the angle between two successive V–V bonds in
the same chain. These values were obtained by using a
V–V bond corresponding to the vector v = δaa + δbb +
δcc, where a, b and c are the unit cell vectors. From the
geometry of the chains it follows that δa = 0, since the
chains lie in a-planes, δc = 0.5 and δb = ±|δb|, where
the sign switches because of the zig-zag character of the
chains. The parameter |δb| is different for the individual
compounds, and is calculated from the exact positions of
the V atoms. We note only small variations of the V–V
bond length and the V–V–V angle across the series.

3 Magnetic susceptibility

Using a commercial SQUID magnetometer, we measured
the magnetization M of 18.8 mg of powdered LiVSi2O6

(number of mols N = 8.95 × 10−5), for temperatures T
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Fig. 2. Magnetic susceptibility χ of LiVSi2O6 as a function of
temperature T , measured in a magnetic field H = 5 T. The
inset magnifies the temperature range 15–35 K.

between 4 and 340 K and in magnetic fields µ0H be-
tween 0.01 T and 5 T. Apart from a temperature in-
dependent component, the molar magnetic susceptibility
χ = M/(HN) was found to be identical in different mag-
netic fields above 10 K. Thus in this temperature range,
χ(T ) also reflects the temperature dependence of the sus-
ceptibility dM(H, T )/dH(H = 0)).

In Figure 2 we display an example of χ(T ), measured
in a magnetic field µ0H = 5 T. The temperatures are too
low to identify a high-temperature Curie-Weiss behaviour
and thus to establish the oxidation state of the V ions.
Reducing the temperature from 340 K, χ(T ) increases
and reaches a broad maximum at Tmax = 115 ± 1 K.
This type of temperature dependence of χ is typical for
low-dimensional magnetic systems. Upon cooling to below
15 K, χ(T ) exhibits a smooth upturn, which is attributed
to the low-temperature Curie-Weiss tail caused by a small
amount of paramagnetic impurities.

We note that in this data set there is no evidence for
any anomalies in χ(T ) at temperatures below Tmax. In
particular, as is shown in the inset of Figure 2, χ(T ) varies
smoothly between 20 K and 30 K, the temperature range
in which, as reported in Section 4, a magnetic transition
is revealed by the NMR data.

This is somewhat surprising because for LiVGe2O6 [3],
NaVGe2O6 [5] and NaVSi2O6 [6], a prominent kink in
χ(T ) indicates the onset of a three-dimensionally anti-
ferromagnetically ordered state upon cooling. We address
this point in more detail in Section 5.

4 7Li NMR

The NMR experiments probed the same sample as that
used for the magnetization measurements. The 7Li NMR
spectra were obtained by monitoring the integrated spin-
echo intensity as a function of the irradiation frequency
f in a fixed external magnetic field H . The selected
values µ0H = 7.0495 T (7.05 T in the following) and
µ0H = 4.5533 T (4.55 T in the following) were calibrated
by monitoring the 2D resonance frequency in liquid D2O.
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Fig. 3. 7Li NMR spectra of LiVSi2O6 for selected temper-
atures above 25 K. The integrated echo intensity, multiplied
by the temperature T , is plotted as a function of the fre-
quency shift K. In the upper graph, two spectra taken at
T = 290 K but in different magnetic fields µ0H = 4.55 T
and µ0H = 7.05 T are compared.

The respective 7Li reference frequencies, f0 = 116.643
MHz and f0 = 75.340 MHz, were obtained from f0 =
γµ0H , with γ = 16.5463 s−1 T−1 as the gyromagnetic
factor of the 7Li nuclei. The spin echo was generated with
a two pulse π/2-delay-π spin-echo sequence.

Figure 3 shows examples of recorded spectra for µ0H =
7.05 T and µ0H = 4.55 T at selected temperatures above
25 K. They were obtained by irradiating a frequency win-
dow of about 20 kHz. The integrated echo intensity, mul-
tiplied by the temperature T , is displayed as a function of
the frequency shift

K =
f

f0
− 1, (1)

where f is the irradiation frequency. In the temperature
range between 25 K and 294 K the shape and the total
intensity of the NMR signal are essentially the same.

For T = 293 K, we show two spectra measured in
the two different magnetic fields of 7.05 T and 4.55 T.
As shown in Figure 3, they coincide in their central parts
but exhibit some differences, indicated by the arrows, at
the upper and lower ends of the signal. This is attributed
to the first order quadrupolar splitting of the nuclear
transitions between the Zeeman states m = ±3/2 and
m = ±1/2 [8]. This frequency splitting is field indepen-
dent and, in the spectra in the higher field, is masked by
the magnetic broadening of the NMR line, which is pro-
portional to the applied magnetic field. µ0H = 4.55 T al-
lows for an estimate of the upper limit of the quadrupolar
frequency fQ ≤ 80 kHz of the 7Li nuclei.

Above 25 K the lineshape of the signal is compatible
with that of a randomly oriented powder with anisotropic
shifts. The anisotropic part may be attributed to the dipo-
lar coupling between the Li nuclei and the paramagnetic
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Fig. 4. Relative frequency shift Kpeak of the peak frequency
fpeak of the 7Li NMR line, displayed as a function of the mag-
netic susceptibility χ. The data are for temperatures T > 25 K
and in magnetic fields H = 7.05 T and H = 4.55 T. The
dashed line represents the best linear fit to the experimental
data. Inset: σ(χ). The dashed line again represents the best
linear fit.

V-moments. Such lineshapes were already observed in the
case of NaVGe2O6 [5] and LiVGe2O6 [4].

In Figure 4, the y-axis corresponds to the shift Kpeak

of the frequency fpeak at the maximum of the NMR signal.
For T ≥ 25 K, Kpeak is plotted as a function of χ(T ). The
data for the two different fields collapse onto the same
curve, and Kpeak(χ) can reasonably well be fitted by

Kpeak = apeakχ + cpeak, (2)

indicating that the temperature dependence of the shift of
the NMR signal is of purely magnetic origin. The hyperfine
coupling corresponding to the signal peak is [8]

Apeak = apeak · NµB = 1280 ± 50 G. (3)

If the hyperfine coupling expected for a purely dipolar
interaction of the V moments with the Li nuclei is calcu-
lated as in references [4,5], the result is Adip

peak = 210 G.
The discrepancy between this calculated and the observed
value is attributed to an additional non-dipolar hyperfine
coupling A0 = 1070±50 G, such that Apeak = Adip

peak+A0.
The coupling represented by A0 is attributed to indi-

rect interaction between the V moments and the Li nu-
clei, mediated by nearby valence electrons. The isotropic
part of the corresponding Hamiltonian results in a line
shift that is independent of the orientation of the powder
grains in crystalline sample, and reflected in the constant
A0. The anisotropic part of the Hamiltonian leads to an
additional line broadening. In our case, this effect turns
out to be small, as will be explained below. In Table 3 we
compare the values of Apeak and A0 for three compounds

Table 3. Values of Apeak and A0 for selected compounds in
the AVX2O6 family.

Apeak (G) A0 (G)
LiVSi2O6 1280 ± 50 1050± 50
LiVGe2O6 [4] 580 480
NaVGe2O6 [5] 1300 ± 50 1140± 50

of the AVX2O6 series, and note relevant differences be-
tween them. The value of A0 strongly depends on details
of the arrangement of the involved electronic orbits pro-
viding the indirect interactions. A theoretical analysis of
this aspect is beyond the scope of this work.

In the inset of Figure 4 we plot

σ =
FWHM

f0
, (4)

where FWHM is the full width at half maximum of the
NMR signal and f0 the above mentioned reference fre-
quency, again as a function of χ. Above 30 K, the data
can be accommodated by

σ = aσχ + cσ. (5)

The corresponding anisotropic part of the hyperfine cou-
pling is

σA = aσ · NµB = 700 ± 100 G. (6)

The contribution expected from the dipolar coupling be-
tween the V magnetic moments and the Li nuclei is
σdip

A = 650 G, if calculated in the same way as in ref-
erence [5]. The values of σdip

A and σA are very close, indi-
cating that the dominant mechanism that causes the line
broadening is of dipolar origin, while other effects, like the
indirect interaction mentioned above, can be neglected.

The inset of Figure 4 also shows that the value of
σ at 25 K is distinctly larger than predicted by equa-
tion (5), thus indicating the onset of antiferromagnetic
correlations. For a discussion of the low-temperature be-
haviour we turn our attention to the NMR spectra at
temperatures below 25 K. Figure 5 displays examples of
spectra measured at temperatures below 30 K and in a
magnetic field µ0H = 7.05 T, recorded by irradiating a
frequency window of about 100 kHz. Above TN = 24 K, a
single NMR line characterizing the paramagnetic state is
observed. Upon cooling its intensity decreases drastically
between 25 K and 24 K, and the narrow line has com-
pletely vanished at 23 K. Below TN = 24 K, a broad, rect-
angular shaped NMR signal develops with decreasing tem-
perature. This shape is typical for ordered moments in a
powder sample. The interpretation of an onset of magnetic
order is also substantiated by the H- and T -dependence of
the width ∆f of the signal, which is represented as a func-
tion of temperature T in the inset of Figure 5 for magnetic
fields µ0H = 4.55 T and µ0H = 7.05 T. Indeed, ∆f is field
independent and, for T → 0, we argue that ∆f tends to
saturate at a constant value of ∆f∗ = 3.4 ± 0.4 MHz.
Thus, below TN, the magnetic moments residing on the
V ions adopt a three-dimensional antiferromagnetic order.
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Fig. 5. 7Li NMR spectra of LiVSi2O6 for selected tempera-
tures below 30 K. The echo intensity is plotted as a function of
the frequency f . The measurement were performed in a fixed
magnetic field H = 7.05 T. Inset: line width ∆f as a function
of T , in magnetic fields H = 4.55 T and H = 7.05 T.

The internal magnetic field Hint at the Li sites attains a
saturation value Hint = ∆f∗/2γ = 1030 ± 60 G.

To gain further information on the phase transition
at TN = 24 K, we measured the temperature dependence
of the spin-lattice relaxation rate, T−1

1 (T ). T−1
1 was de-

termined by monitoring the recovery of the 7Li nuclear
magnetization m after the application of a long comb of
radiofrequency pulses. The experiments were performed
in a magnetic field µ0H = 7.05 T, irradiating a frequency
window of about 100 kHz in the center of the NMR signal.
An exponential recovery

m(t) = m∞[1 − exp(−t/T1)] (7)

with recovery time t was observed across the entire tem-
perature range between 5 and 295 K. The single expo-
nential law is appropriate, since we simultaneously irra-
diate all the three possible transitions of the I = 3/2 Li
nuclear spins, with the maximum splitting of the order
of fQ ≈ 80 kHz. In Figure 6 we display the tempera-
ture dependence of the spin-lattice relaxation rate T−1

1 .
Above TN, T−1

1 slowly decreases by a factor of three be-
tween 295 K and 30 K upon cooling. A prominent peak in
T−1

1 (T ) at TN = 24 K reflects the magnetic phase transi-
tion.

The temperature dependence of the spin-lattice relax-
ation rate at low temperature provides additional infor-
mation about the low-energy magnetic excitations. Below
TN, T−1

1 decreases by orders of magnitude (a factor of 100
between 25 K and 10 K, as shown in Fig. 7), indicating the
formation of a gap in the spectrum of magnon excitations
in the antiferromagnetically ordered phase. This interpre-
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tation is supported by T−1
1 (T ) well below TN, which varies

according to [9]

T−1
1 (T ) ∼ exp(−∆/T ), (8)

as is emphasized by the solid line in Figure 7. Because of
the presence of a small amount of paramagnetic impuri-
ties, the actual value of the gap may be somewhat larger
than the estimated value ∆ = 14.5 K. A comparison of gap
values, all established from T−1

1 (T ) well below TN, is made
in Table 4 for three AVX2O6 compounds; they all turn out
to be almost equal. Such gaps are usually attributed to an
easy-axis single-ion magnetic anisotropy [10], an aspect
discussed in more detail in Section 5.

Finally, we consider the temperature dependence of
the spin-spin relaxation rate T−1

2 . The corresponding ex-
periments were made under the same conditions as the T1

experiments and T2 was determined from fits to the decay
of the echo intensity m with the exponential law

m(t̃) = m0 exp(−t̃/T2). (9)
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Table 4. Values of the gap in the magnetic excitation spectrum
∆, calculated from the low-temperature dependence of T−1

1 , for
selected compounds in the AVX2O6 family.

∆ (K)
LiVSi2O6 14.5
LiVGe2O6 [4] 14.7
NaVGe2O6 [5] 12.5

Table 5. Values of T−1
2,T→0 and T−1

2,T→∞ for selected compounds
in the AVX2O6 family. For the calculation of T2 in LiVGe2O6,
equation (9) was replaced with m(t̃) = m0 exp(−(t̃/T2)

1.4).

T−1
2,T→0 (103 s−1) T−1

2,T→∞ (103 s−1)

LiVSi2O6 1.9 ± 0.1 1.4 ± 0.2
LiVGe2O6 [4] 2.2 ± 0.2 1.2 ± 0.2
NaVGe2O6 [5] 1.0 ± 0.1 0.6 ± 0.1

Here t̃ = 2τ and τ is the delay between the π/2- and
π-pulses which generate the spin echo.

In the paramagnetic phase above TN, T−1
2 is approx-

imately constant at a value ≈(1.4 ± 0.2) × 103 s−1. As
is shown in the inset of Figure 6 the phase transition is
revealed by a sudden reduction of T−1

2 (T ) at TN upon
cooling. This decrease is followed by an upturn at even
lower temperatures. As T → 0, T−1

2 tends to saturate to-
wards the constant value T−1

2,T→0 = (1.9 ± 0.1) × 103 s−1.
This particular temperature dependence of T−1

2 seems to
be typical for the the AVX2O6 series (see the T−1

2 (T ) data
in [4,5]). In Table 5 we display the values of T−1

2,T→0 and
T−1

2,T→∞, and notice that the values are of the same order
of magnitude.

In magnetically ordered states, T−1
2 is often caused by

magnon mediated interactions between nuclei. The unex-
pected upturn in T−1

2 (T ) upon cooling below TN is incom-
patible with this scenario because the large gaps listed in
Table 4 would lead to a rapid decrease of T−1

2 . No such
decrease has been observed, in particular for LiVGe2O6

down to 1 K, as reported in reference [4]. Therefore it
must be that other mechanisms are essential for the spin-
spin relaxation.

5 Weakly interacting spin S= 1 chains
in (Li,Na)V(Ge,Si)2O6

The results of the present and former studies [3–5] clearly
indicate that in the (Li, Na)V(Ge, Si)2O6 series, the on-
set of the low temperature Haldane phase is intercepted
by the developement of three-dimensional antiferromag-
netic order. It is known that even a very small interchain
coupling may quench the Haldane gap ∆H and induce a
three-dimensional antiferromagnetic order [11–13]. In or-
der to establish the ratios Jp/J between interchain and
intrachain couling for the different compounds, we offer
an analysis of the χ(T ) data invoking quantum Monte
Carlo calculations based on a model Hamiltonian.

We model the system of magnetic moments at the V
sites by S = 1 spins placed on a cubic lattice. The cou-
pling to the next neighbours along the chain direction is
antiferromagnetic, J > 0. Each spin is allowed to interact
with the four nearest spins of neighbouring chains (see
Fig. 1), assuming an interchain coupling constant Jp. The
spin S = 1 operators of the ith spin on the r-chain are de-
noted by Sr,i. The Hamiltonian is the sum of two terms,

H = HJ + HJp , (10)

where the first term represents the intrachain Hamiltonian
for a collection of antiferromagnetic S = 1 chains,

HJ = J
∑

r;i

Sr,i · Sr,i+1 (J > 0). (11)

The second term in equation (10) is the interchain
Hamiltonian

HJp = Jp

∑

(r,s);i

Sr,i · Ss,i, (12)

where (r, s) indicates a pair of neighbouring chains.
In the random phase approximation (RPA)

Jp/J =
1

4ξχ̄s(TN/J)
, (13)

where χ̄s is the staggered susceptibility of an isolated S =
1 chain (Jp = 0), which was calculated with QMC meth-
ods and reported in reference [5] (see also Appendix A).
The factor 4 in the denominator corresponds to the num-
ber of neighbouring chains. The validity of equation (13)
was shown in reference [13] for Jp/J ≤ 0.2 (see also
Appendix A), provided that the renormalized value of
ξ = 0.695, instead of the classically expected ξ = 1,
is used. From χ(T ) as obtained by QMC calculations,
Tmax/J may be expressed as a function of Jp/J , using
the approximation

Tmax/J = a2(Jp/J)2 + a1(Jp/J) + a0, (14)

with a2 = −0.95, a1 = 0.69 and a0 = 1.32 (see
Appendix A). Combining equations (13) and (14), the re-
lation between

Jp/J and TN/Tmax (15)

may be established. It is represented in Figure 8. The
critical value jcrit that separates the Haldane phase
(Jp/J < jcrit) from the three-dimensional antiferromag-
netically ordered phase (Jp/J > jcrit) is

jcrit = lim
TN/Tmax→0

Jp/J ≈ 0.02 (16)

(see also Refs. [5,13]). The plot in Figure 8 allows to es-
tablish the values of Jp/J for the compounds of the se-
ries AVX2O6 from the experimentally determined ratio
TN/Tmax. The results are listed in Table 6. These ratios
differ from those given in reference [6] because the latter
were obtained using the formula given in reference [14],
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Fig. 8. Jp/J as a function of TN/Tmax, resulting from the
modified RPA approximation. The value of TN/Tmax for the
AVX2O6 compounds are indicated. The dashed line represents
Jp/J(TN/Tmax) for weakly interacting spin S = 1/2 chains as
given in reference [14].

Table 6. List of magnetic parameters of the AVX2O6 family
that are relevant in the comparison between calculations and
experiments.

Tmax TN Jp/J J/kB Jp/kB

(K) (K) (K) (K)
LiVSi2O6 115 24.0 0.034 85.7 2.91
NaVSi2O6 48 17.4 0.068 35.2 2.40
LiVGe2O6 62 25 0.079 45.3 3.58
NaVGe2O6 25.0 18.0 0.20 17.6 3.54

which is valid for spin S = 1/2 chains, and is represented
by the dashed line in Figure 8.

Inspecting Table 6 reveals that for LiVSi2O6, Jp/J is
closest to jcrit and thus, the Haldane phase. If the latter
is the ground state, the magnetic susceptibility decreases
exponentially with T at low temperatures without exhibit-
ing an anomaly. In view of this and although LiVSi2O6 is
not a Haldane system, it seems reasonable that in this
case, the expected anomaly at TN is very much reduced
and not visible in the data. Anomalies in χ(T ) at TN were
observed, however, for other compounds of the series for
which Jp/J significantly exceeds jcrit (see Refs. [2,3,5]).

While the value of the interchain coupling Jp is al-
most constant across the series, the value of the intra-
chain coupling J decreases by a factor of 5 from LiVSi2O6

to NaVSi2O6, LiVGe2O6 and NaVGe2O6. The reason for
such a variation cannot be established from the data at our
disposal. It does not appear to be explained by geometri-
cal features of the V-chains alone, since the relevant pa-
rameters differ only by small amounts (0.5% for the V–V
bond length and 1◦ for the V–V–V angle; see Tab. 2). It
may therefore be that the position of atoms other than V
and the resulting electronic structure are relevant for the
indirect mediation of the magnetic interaction between
neighbouring V ions. Inspecting the positions of the O
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Fig. 9. Magnetic susceptibility χ as a function of temperature
T of LiVSi2O6, compared with the χ(T ) resulting from quan-
tum Monte Carlo calculations. Inset: dχ/dT (T ). Note that the
noise in the experimental dχ/dT (T ) data, computed from χ(T )
represented in Figure 2, does not allow to confirm or exclude
the presence of a small anomaly like the one reported in refer-
ence [6].

ions around the V ions, it turns out that J decreases with
increasing distortion of the VO6-octahedra.

Next, we compare the experimental χ(T ) data of
LiVGe2O6 [3] and NaVGe2O6 [5] with those calculated
with QMC methods, employing the values of Jp and J
from Table 6. This is done in Figures 9–11, where χ is plot-
ted as a function of temperature T . Bullets show the ex-
perimental data, and open circles the calculated χQMC(T ),
adapted to the experimental data by varying the param-
eters χ0 and peff in

χQMC(T ) = χ0 + (NAVµ2
B)p2

eff Jχ̄(t = kBT/J). (17)

In equation (17) χ̄ and t are the dimensionless suscep-
tibility and temperature, respectively, discussed in Ap-
pendix 6. Their relations to physical quantities is exem-
plified in Table A.1. The factor (NAVµ2

B) accounts for the
correct units of a magnetic susceptibility. The additive
constant χ0 represents the offset in the experimental data
due to diamagnetic contributions and p2

eff is a multiplica-
tive factor, causing the high-temperature magnetic suscep-
tibility (NAVµ2

B)p2
effS(S + 1)/3kBT to be of Curie-Weiss

type. We note that the value of peff of NaVGe2O6 estab-
lished in this way is somewhat larger than the one which
resulted from the reported fitting of a Curie-Weiss law to
the experimental χ(T ) data at high temperatures [5]. The
insets of Figures 9–11 represent the derivatives with re-
spect to temperature, (dχ/dT )(T ), and (dχQMC/dT )(T ).
The discrepancy between the two can only partially be at-
tributed to the presence of paramagnetic impurities, which
might reduce dχ/dT at low temperatures. The prominent
peak in dχ/dT for LiVGe2O6 and NaVGe2O6 (less so
for LiVSi2O6) is not accounted for by the simulations,
indicating that the Hamiltonian in equation (10) is not
able to fully account for the magnetic properties of the
AVX2O6-series.
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Fig. 10. Magnetic susceptibility χ as a function of tempera-
ture T of LiVGe2O6, compared with the χ(T ) resulting from
quantum Monte Carlo calculations. Inset: dχ/dT (T ).
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Fig. 11. Magnetic susceptibility χ as a function of tempera-
ture T of NaVGe2O6, compared with the χ(T ) resulting from
quantum Monte Carlo calculations. Inset: dχ/dT (T ).

A more realistic model would include a term

HD = −D
∑

a;i

Sz
a,iS

z
a,i, (18)

in the Hamiltonian of equation (10), which describes a sin-
gle ion magnetic anisotropy. D > 0 favorizes the alignment
of the moments along the z-axis, while D < 0 favorizes
configurations with magnetic moments in the plane per-
pendicular to the z-axis. As discussed in the Appendix,
a term with D > 0 is appropriate for the present case.
Indeed, it is the natural choice in order to account for the
formation of the gap ∆ (not to be confused with the Hal-
dane gap ∆H of a Haldane system) in the magnetic excita-
tion spectrum, and to reproduce the sharp peak in dχ/dT .
This possibility was already considered in reference [4].
Further speculations would require a more detailed analy-
sis of weakly coupled anisotropic spin S = 1 chains, which
we leave for future investigations. Here, we only remark
that equations (13) and (14) have to be adapted if D �= 0,

which would yield values of Jp and J different from those
given in Table 6.

6 Summary, conclusions and outlook

Our experimental investigations confirm that in the
AVX2O6 compounds the interchain coupling Jp is always
large enough to quench the Haldane gap and provoke the
onset of a three-dimensional antiferromagnetic order at
TN > 0. While the calculated Jp is almost constant across
the AVX2O6 series, the intrachain coupling J varies by a
factor of 5. This variation does not seem to be correlated
to geometrical parameters of the V chains. We therefore
suspect that the electronic orbitals that are involved in
the mediation of the coupling between the V magnetic
moments along the chains, are affected by the positions of
the other atoms in the structure. In particular, the grow-
ing distortion of the VO6 octahedra seems to reduce the
value of J . Band structure calculations and the subsequent
determination of the Wannier functions of the V and O
atoms of the four different compounds have to be made
in order to understand the details of the intrachain V–V
coupling.

The comparison of the experimental and theoretical
temperature dependences of the magnetic susceptibility
indicates that the magnetic moments at the V atoms are
affected by magnetic easy axis single-ion anisotropy, con-
sistent with the observation of a gap in the magnetic exci-
tation spectra below TN. The origin and the magnitude of
this effect could also be clarified starting from the results
of band structure calculations.

We are grateful to M. Sigrist and R. Monnier for useful discus-
sions. We acknowledge the help of M. Weller in the preparation
of the manuscript. The numerical simulations were performed
using the Asgard and Hreidar cluster at ETH Zürich.

Appendix A: QMC calculations, magnetic
susceptibility and critical temperature

In this Appendix we focus on the QMC calculations, aim-
ing at clarifying some points of the discussion of the mag-
netic susceptibility in the AVX2O6 series in Section 5. For
the QMC computations, the intrachain coupling is set to
unity, i.e., J = 1, and all quantities are dimensionless. We
employ this convention throughout this Appendix. Phys-
ical quantities with correct dimensions can be gained by
using the corresponding energy values of J , according to
Table A.1.

The QMC calculations are based on the Hamiltonian

h = hj + hjp + hd, (A.1)

where the three terms are the intrachain Hamiltonian (see
also Eq. (11))

hj = j
∑

r;i

Sr,i · Sr,i+1 (j > 0), (A.2)
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Table A.1. Conversion from dimensionless to physical quan-
tities.

Dimensionless Physical
quantity quantity

1 J
t T = J/kB · t
jp Jp = J · jp
χ̄ χ = J · (NAVµ2

B)χ̄
δ ∆ = J · δ
d D = J · d
h H = J · h
c C = c · NAVkB

the interchain Hamiltonian (see also Eq. (12))

hjp = jp
∑

(r,s);i

Sr,i · Ss,i, (A.3)

and the magnetic anisotropy hamiltonian (see also
Eq. (18))

hd = −d
∑

r;i

Sz
r,iS

z
r,i. (A.4)

For noninteracting chains (jp = 0), we considered a one-
dimensional array of up to 100 S = 1 spins. For weakly
interacting chains we used a cubic 8 × 8 × 20-lattice of
S = 1 spins, with the largest extension corresponding to
the chain direction. The spin S = 1 operators of the i-th
spin on chain r are denoted by Sr,i. With (r, s) we denote
a pair of neighbouring chains. We employed a stochastic
series expansion [15,16] QMC code based on the ALPS
library [17,18].

In the RPA approximation the effect of the interchain
interaction hjp is treated as an external perturbation of a
single chain by the n neighbouring chains. Standard mean
field arguments show that the temperature tN of the tran-
sition from the high-temperature paramagnetic to the low-
temperature antiferromagnetically ordered state is related
to the interchain coupling according to

jp =
1

ξNχ̄s
zz(tN)

. (A.5)

The staggered susceptibility χ̄s
zz per spin of an isolated

S = 1 chain, described by the hamiltonian hj + hd, was
calculated using the QMC technique for various values
0 ≤ d ≤ 0.5. By analyzing the results of QMC calculations
for the Hamiltonian (A.1) on a cubic lattice (n = 4) with
d = 0, it was shown in reference [13] that, for jp ≤ 0.2,
the interchain coupling renormalizes the value of ξ in equa-
tion (A.5) from unity down to ξ = 0.695. In Figure A.1 we
display the result for jp(tN) also for the case d ≥ 01. We
find good agreement to discrete pairs of values (jp, tN) re-
sulting of QMC computations using the full Hamiltonian
(A.1). Such calculations yield, among other quantities, the

1 From our analysis it follows that in a single chain, the Hal-
dane gap is quenched if d exceeds a critical value of dcrit ≈ 0.5.
This follows from jp → 0 for T → 0. This observation is in
good agreement with the results reported in reference [19].
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specific heat c for a system with interchain coupling jp. Inset:
cp(t) for jp = 0.1 and different values of d ≥ 0, calculated with
QMC methods; the critical temperature tN is indicated.
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Fig. A.2. Magnetic susceptibility χ̄ calculated using QMC,
as a function of the temperature t, for different values of jp.
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temperature dependence of the specific heat c. For a given
value of jp, the temperature of the peak in c is identified
as tN (see inset of Fig. A.1).

We first focus on the case d = 0. In Figure A.2 we show
examples of the temperature dependence of the magnetic
susceptibility χ̄(T ), calculated using QMC, for selected
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termined with QMC calculations, for fixed jp = 0.1 and differ-
ent values of d. The transition temperature tN, corresponding
to the peak in c(t), is indicated.

values of jp. The temperature tmax, corresponding to the
maximum of χ̄, is indicated. The inset of Figure A.2 dis-
plays tmax(jp) which we find to be well approximated by

tmax = a2j
2
p + a1jp + a0, (A.6)

with a2 = −0.95, a1 = 0.69 and a0 = 1.32.
In this way, one obtains

tN
tmax

(jp) =
tN(jp)

tmax(jp)
, (A.7)

where the numerator of the right hand side is the inverse
function of jp(tN) given in equation (A.5), and the de-
nominator is given in equation (A.6). The inverse of the
function in equation (A.7),

jp(tN/tmax), (A.8)

is plotted in Figure 8 in the form (Jp/J)(TN/Tmax).
Finally we consider the case of d �= 0 which intro-

duces an anisotropy of the magnetic susceptibility such
that χ̄zz �= χ̄xx = χ̄yy. Averaging over all directions, the
effective value for a powder sample is

χ̄powder =
1
3
χ̄zz +

2
3
χ̄xx. (A.9)

The temperature dependence of χ̄zz(t) has been com-
puted by QMC and is represented in the upper panel of

Figure A.3 for jp = 0.1 and selected values of d. Note that
equation (A.6), and thus also (A.8), do not hold if d > 0,
since for fixed jp, the maximum of χ̄zz(t) is shifted towards
higher temperatures. Nevertheless, two important conclu-
sions can be drawn from the behaviour of χ̄zz(t): first,
d > 0 induces an anomaly in χ̄zz(t) at tN, as is shown in
the lower panel of Figure A.3. This kink will be reflected
in χ̄powder (see Eq. (A.9)). Secondly, for d > 0, the rapid
decay of χ̄zz to zero upon cooling below tN indicates the
formation of an energy gap δ above the three-dimensional
antiferromagnetically ordered ground state (in agreement
with Ref. [10]). The low-temperature behaviour is consis-
tent with an exponential suppression,

χ̄zz(t) ∼ exp(−δ/t), (A.10)

indicative of a gap δ in the system. We leave a detailed
analyis of the dependence of δ on d and jp to future inves-
tigations. Finally, we note that for d < 0, the presence of a
gap δ is excluded and in this case, χ̄zz tends to a non-zero
value for t → 0.
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